
Turbo Macro Pro editor commands: slark.me/c64
Special editor commands are accessed by pressing the 'command key', followed by another key
to invoke a specific command. Certain commands (, ,) will themselves invoke a submenu
of additional commands. Several other commands may prompt for user input such as filenames,
memory locations, and so on. The command key in all versions of TA (Turbo Assembler), TAM
(Turbo Assembler Macro), and TMP (Turbo Macro Pro) is the key, which is located to the
immediate left of the number 1 key.

The list below shows all the commands that are invoked by first pressing the command key,
followed by the key in the left column:

 exit‑basic: Leaves TMP to a BASIC prompt. TMP can be re‑entered immediately after
doing this with SYS 8*4096 .

 view-seq: Prompts for a SEQ filename, then displays the contents of the file on
screen (! pauses output, RUN/STOP aborts).

 paste-separator: Outputs a 'separator' comment line to the current cursor line,
overwriting anything else there.

 assemble: Assembles to the assembly bank, which is bank 0 in all mods supporting
extra RAM, or simply directly to C64 main memory on the unexpanded C64 mod.

 assemble-to-object: Assembles to the current object bank; only enabled on mods
supporting extra RAM.

 print-listing: Prompts for a filename to which a source listing print out will be
saved as a SEQ file. This invokes the assembler and the resulting listing shows a
side-by-side output of code lines preceded by the object code the line assembles
to. Instead of a filename, enter by itself to print directly to a printer
(device 4) or by itself to output to the screen (! pauses output, RUN/STOP
aborts).

 assemble-to-disk: Prompts for a filename to which assembled code is saved on
disk.

 assemble-to-slave: Assembles across a cable to a slave machine; only enabled  
in the X2/R2 mods.

 make-data: Prompts for a region of memory (start and end address). Data in that
region are read and translated into .byte statements which are inserted into
the source code at the current cursor line. In mods supporting extra RAM, the
data is read from the current object bank; otherwise the data is read from the
C64 main memory.

 set-tab-return: Takes the current cursor location and sets that as the column at
which the cursor is placed after pressing return.

 set-tab-source: Takes the current cursor location and sets that as the column at
which the source code (opcode/pseudo) is aligned at.

 add-hex: Prompts for two 16 bit values, adding them and outputting the result in
hex and decimal.

 sub-hex: Prompts for two 16 bit values, subtracting the second from the first and
outputting the result in hex and decimal.

DEL delete-line: Removes the entire line under cursor, moving subsequent lines up by
one.

INST toggle-line-insert: Switches the editing mode for line insertion; when off,
hitting return does not insert a new blank line.

 copy-line-buffer: Copies the line under cursor to the line buffer.

 paste-line-buffer: Pastes the line buffer to the current cursor line.

 cursor-left-edge: Move cursor to column 0 (the leftmost column).

http://slark.me/c64

 write-seq: Prompts for a filename to which the current source is saved to disk as
a SEQ file.

 enter-seq: Prompts for a filename from which lines of source code are read off
disk and inserted at the current cursor line.

 replace-string: Prompts for search and replacement strings and then finds the
first occurance of the search string, leaving the cursor at that occurance.

 ram-submenu: Activate the expansion RAM submenu (where applicable), with these
additional key commands:

 load-to-ram: Prompts for a filename. A second prompt is given for a load address,
using the file's actual load address as a default. Then the file is loaded into
the current object bank at the given address.

 backup-to-bank: Prompts for an available source bank number, and then copies the
active source code into that bank.

 set-object-bank: Prompts for an available RAM bank and uses that as the new
object bank.

 swap-to-bank: Prompts for an available source bank number; if the selected bank
contains a TMP/source instance, then the active source code is backed up to it's
assigned bank and the selected bank is swapped into C64 main memory, becoming the
new active source code. TMP will not allow swapping in a bank that doesn't
already have a TMP instance in it.

 set-jumpback: Prompts for an address, which will be the location to which the
jumpback routine will be copied when executing an assembled code. If the address
is set to $0000 then TMP will not copy the jumpbacker at all. The default address
is $0140 .

 replace-one: Executes one replacement of a just-found search string and then
searches for the next occurance, moving the cursor to it.

 replace-all: Executes replacements for every occurence of the search string
located from the current cursor location to the bottom of the source code.

 list-labels: Prompts for a filename to which a listing of each label and the
memory address that it resolves to will be saved to disk as a SEQ file. Instead
of a filename, enter by itself to print directly to a printer (device 4) or
by itself to output to the screen (! pauses output, RUN/STOP aborts). Note that
the output is based on the label resolutions from the last time the source code
was assembled, and if list-labels is invoked prior to assembling any source code,
the output will be empty.

 list-labels-vice: Identical to list-labels, except the format of the output is
compatible for loading into the VICE emulator monitor.

 find-label: Prompts for a string to search for as a label, then places the cursor
at the first occurance of that string where it is used as a label definition.

 preferences-submenu: Activates the preferences editor submenu which can be used
to modify the separator style and color scheme:

 Edits the color used for $d020 (border).
 1 Edits the color used for $d021 (background).
 2 Edits the color used for the message line.
 3 Edits the color used for the status line.
 4 Edits the color used for regular source.
 5 Edits the color used for source with a syntax error.
 6 Edits the color used for source in the current marked block.
 Edits the separator template.
 Prompts for a filename, to which a complete copy of the newly customized TMP

program is written to disk.

 disk-command: Prompts for a string that is sent to the current serial device as a
disk command, the results of which are displayed on the message line. Entering a
 by itself will send a status command to the device.

 view-directory: Outputs a directory listing from the current serial device to the
screen (! pauses output, RUN/STOP aborts).

 petscii-mode: Sets the editor into a literal PETSCII mode; the cursor flashes
slightly faster to indicate the setting. During this mode, all keypresses are
taken literally as PETSCII sequences which are stored on the line. This mode is
useful for entering color or cursor movement codes into .text strings that can be
'printed' from within your program. Hitting the key will quit this mode and
return to normal editing.

 save-source: Prompts for a filename, to which the current source code is saved to
disk as a binary PRG file.

 increment-device: Selects the next available device number on the bus between 8
and 15.

 find-string: Prompts for a string and then searches for the first occurance in
the source code.

 goto-mark: Prompts for a mark (1-9, s, e) and moves the cursor to the line
number corresponding to the selected mark.

 find-next: Finds the next occurance of the search string.

 define-fkeys: Prompts for a redefinable function key (-), then allows the
user to enter a new definition for the selected key.

 reset-fkeys: The function keys (-) are all reset to TMP's internal
defaults. This is useful when loading a source code that has a different set of
key definitions than TMP.

 load-source: Prompts for a filename, from which source code is read. Note, the
loaded source code will *replace* any current source!

 list-marks: Displays the current line numbers associated with each mark.

 kill-mark: Prompts for a mark (1-9, s, e) and disassociates the selected mark
with whatever line number it had been pointing to.

 undo-edit: Undo whatever current line editing has occured. Note: This can only be
used as long as the cursor has not left the current line where editing has taken
place!

 cold-start: This performs a hard reset of TMP, re-initializing and erasing the
current source code.

 block-submenu: Activates the block commands submenu, with these additional key
commands:

 w write-block: Prompts for a filename to which the source code within the current
marked block is saved to disk as a SEQ file.

 c copy-block: Copies the current marked block to the current cursor position.
 m move-block: Moves the current marked block to current cursor position.
 k kill-block: Erases the current marked block.

 goto-line: Prompts for a line number and then moves the cursor to the entered
line.

 set-mark: Prompts for a mark (1-9, s, e) and then sets the selected mark to
the current cursor line. s and e stand for start and end; setting these marks
defines a contiguous set of lines upon which subsequent block operations (invoked
by the block-submenu) will operate.

 join-line: The remainder of the current line (everything to the right and under
the current cursor location) is moved into the same location on the line
immediately above, deleting the old line in the process.

 blank-to-end: Blanks out everything on the current line to the right and under
the current cursor location.

RETURN split-line: The remainder of the current line (everything to the right and under
the current cursor location) is moved into a new line which is inserted
immediately below the current line.

SPACE blank-line: Blanks out the current line.

CRSR⇨ cursor-right-edge: Moves the cursor to column 39.

⇦CRSR cursor-left-edge: Moves the cursor to column 0.

CRSR⇩ Moves the cursor down by 200 lines.

⇧CRSR Moves the cursor up by 200 lines

 The command key, when pressed twice in a row, outputs an actual character.

The list below shows all the commands that are invoked by pressing the key in the left
column (without first pressing the command key):

INST toggle-char-insert: Switches the editing mode for character insertion; when off,
new key presses overwrite instead of insert.

F1 Moves the cursor up by 20 lines.

F2 Moves the cursor to line 0 (top of the source).

F7 Moves the cursor down by 20 lines.

F8 Moves the cursor to the bottom of the source.

Function keys F3-F6 are redefinable, and have these default operations:

F3 Identical to + ⇧CRSR (cursor up by 200 lines).

F4 Assembles (as with + 3) and then auto executes the code.

F5 Identical to + CRSR⇩ (cursor down by 200 lines).

F6 Identical to + R which invokes the RAM submenu.

